

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 3177–3180

A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherate $\dot{\mathbf{x}}$

T. Narender* and K. Papi Reddy

Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226 001, India

Received 14 February 2007; revised 2 March 2007; accepted 8 March 2007 Available online 12 March 2007

Abstract—Chalcones are secondary metabolites of terrestrial plants, precursors for the biosynthesis of flavonoids and exhibit various biological activities. Condensation of substituted acetophenones (2a–12a) with various aromatic aldehydes (1b–7b) in the presence of BF_3-Et_2O at room temperature gave chalcones in 75–96% yield. $© 2007$ Published by Elsevier Ltd.

Chalcones are the main precursors for the biosynthesis of flavonoids, which are frequent components of the human diet. Licochalcone A isolated from the roots of Glycyrrhiza inflata (licorice) has in vitro and in vivo anti-malarial^{[1](#page-2-0)} and antileishmanial activity,^{[2](#page-3-0)} 3-methoxy-4hydroxyloncocarpin isolated from the roots of Lonchocarpus utilis inhibits NADH:ubiquinone oxidoreductase activity[3](#page-3-0) and synthetic chalcones such as 2,4-dimethoxy-4'-allyloxychalcone and 2,4-dimethoxy-4'-butoxychal-cone have been reported as antileishmanial agents^{[4](#page-3-0)} (Fig. 1). Recent studies on biological evaluation of chal-cones revealed some to be anti-cancer,^{[5](#page-3-0)} anti-inflammatory, 6 antimitotic, 7 anti-tubercular, 8 cardiovascular, 9 cell differentiation inducing,^{[10](#page-3-0)} nitric oxide regulation modulatory^{[11](#page-3-0)} and anti-hyperglycemic agents.^{[12](#page-3-0)}

Of the many methods available for the synthesis of chalcones, the most widely used is the base catalysed Claisen–Schmidt reaction in which the condensation of a ketone with an aldehyde is carried out in the presence of aq NaOH,^{[13](#page-3-0)} KOH,^{[14](#page-3-0)} Ba(OH)₂,^{[15](#page-3-0)} hydrotal-cites,^{[16](#page-3-0)} LiHDMS^{[17](#page-3-0)} and calcined NaNO₃/natural phosphates.[18](#page-3-0) The acid catalyzed methodologies include the use of AlCl₃,^{[19](#page-3-0)} dry HCl,^{[20](#page-3-0)} Zn(bpy)(OAc)₂,^{[21](#page-3-0)} TiCl₄,^{[22](#page-3-0)} $\text{Cp}_2\text{ZrH}_2/\text{NiCl}_2$,^{[23](#page-3-0)} Zeolites^{[16](#page-3-0)} and RuCl₃.^{[24](#page-3-0)}

To our knowledge, BF_3-Et_2O has not been used for the Claisen–Schmidt reaction, however in 1940, Breslow

0040-4039/\$ - see front matter © 2007 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2007.03.054

Figure 1. Naturally occurring chalcones (licochalcone A and 3methoxy-4-hydroxyloncocarpin) and synthetic chalcones (2,4-dimethoxy-4'-allyloxychalcone and 2,4-dimethoxy-4'-butoxychalcone).

and Hauser^{[25](#page-3-0)} described the use of BF_3 gas for one example, the condensation of acetophenone with benzaldehyde. This method has several disadvantages such as the special efforts needed to pass $BF₃$ gas into the reaction mixture (commercial BF_3 gas was passed through a solution of boric oxide in concd H_2SO_4 to remove hydrogen fluoride), or a special experimental set up for BF_3 gas generation, the high cost of BF_3 gas and a laborious work-up.

To generalize our methodology we synthesized several chalcones 1c–15c [\(Table 1](#page-1-0)) by reacting various substituted acetophenones (2a–12a) and substituted benzaldehydes (1b–7b) using 0.5 equiv of BF_3-Et_2O

Keywords: Chalcone; Synthesis; BF_3-Et_2O ; Claisen–Schmidt reaction. \star This is CDRI Communication No. 7138.

^{*} Corresponding author. Tel.: +91 522 2612411 17; fax: +91 522 2623405; e-mail: tnarender@rediffmail.com

Table 1 (continued)

Entry	Ketone	Aldehyde	Chalcone (product)	Time (min)	Yield ^a (%)	$Mp (^{\circ}C)$
13	F. Ω F_{11a}	OMe Η. 4 _b ő	$_$ OMe 13c O	150	82	$97 - 99$
14	HO [®] $7a$ \circ	CI Η. ő 7 _b	-CI $HO -$ Ő 14c	$30\,$	87	$148 - 150$
15	$C_{16}H_{33}$ O 12a	OMe OMe Η. O 1 _b	OMe $C_{16}H_{33}$ O `OMe Ö 15c	60	92	Oil

^a Isolated yields.

Scheme 1. Synthesis of O-acylated and N-acylated chalcones by using BF_3-Et_2O .

(Scheme 1). 26 Most of the products were formed within 15–150 min and the trans double bond was obtained exclusively. The reaction mixture was washed with water to remove BF_3 complexes, concentrated and recrystallized to give pure chalcones (1c–15c) in high yields without column chromatography in most cases.

In aq KOH or NaOH assisted reactions, reaction times were much longer (2–4 days), with high probability of side reactions such as the Cannizzaro reaction or aldol condensation. By using BF_3-Et_2O we obtained chalcones exclusively, within 15–150 min and moreover, we did not observe any side reactions.

It is important to note that BF_3-Et_2O can be used in the presence of ester and amide functional groups. To demonstrate this we carried out a condensation reaction between O-acylated 4a or N-acylated acetophenone 5a and aromatic aldehydes (3b, 4b) and synthesized O-acylated 4c or N-acylated chalcones 5c in high yields (Scheme 1) by using BF_3-Et_2O . These types of reactions cannot be carried out using KOH or NaOH since hydrolysis of the ester or amide would occur.

In summary, we have developed a new methodology and synthesized several substituted chalcones by using $BF_3 Et₂O$, for the first time. Our method has many advantages over existing methods such as high yields, simple work-up, short reaction times, no side reactions, no column-chromatography in most cases, a convenient source of BF_3 , solvent-free reactions in the case of liquid reactants and tolerance of base sensitive functional groups (esters, amides).

Acknowledgements

The authors are grateful to the Director, CDRI, Lucknow, India for the drug development programme on antimalarial and antileishmanial agents, SAIF for spectral data. K.P.R. thanks the CSIR, New Delhi for the award of an SR fellowship.

Supplementary data

Spectral data of all the synthetic compounds are available in the supplementary data. Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.2007.03.054.](http://dx.doi.org/10.1016/j.tetlet.2007.03.054)

References and notes

1. Chen, M.; Theander, T. G.; Christensen, S. B.; Hviid, L.; Zhai, L.; Kaharazmi, A. Antimicrob. Agents Chemother. 1994, 38, 1470–1475.

- 2. Chen, M.; Christensen, S. B.; Blom, J.; Lemmich, E.; Nadelmann, L.; Fich, K.; Theander, T. G.; Kharazmi, A. Antimicrob. Agents Chemother. 1993, 37, 2550–2556; Chen, M.; Christensen, S. B.; Theander, T. G.; Kharazmi, A. Antimicrob. Agents Chemother. 1994, 38, 1339–1344.
- 3. Fang, N.; Casida, J. E. J. Nat. Prod. 1999, 62, 205–210.
- 4. Chen, M.; Zhai, L.; Christensen, S. B.; Theander, T. G.; Kharazmi, A. Antimicrob. Agents Chemother. 2001, 45, 2023–2029.
- 5. Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K. F.; Nakanishi, Y.; Lee, K.-H. Bioorg. Med. Chem. Lett. 2000, 10, 699-701; Bois, F.; Beney, C.; Boumendjel, A.; Mariotte, A. M.; Conseil, G.; DiPietro, A. J. Med. Chem. 1998, 41, 4161– 4164.
- 6. Hsieh, H.-K.; Tsao, L.-T.; Wang, J.-P. J. Pharm. Pharmacol. 2000, 52, 163–171; Hsieh, H.-K.; Lee, T.-H.; Wang, J.-P.; Wang, J.-J.; Lin, C.-N. Pharm. Res. 1998, 15, 39–44; Herencia, F.; Ferrándiz, M. L.; Ubeda, A.; Domínguez, J. N.; Charris, J. E.; Lobo, G. M.; Alcaraz, M. J. Bioorg. Med. Chem. Lett. 1998, 8, 1169–1174.
- 7. Ducki, S.; Forrest, R.; Hadfield, J. A.; Kendall, A.; Lawrence, N. J.; McGown, A. T.; Rennison, D. Bioorg. Med. Chem. Lett. 1998, 8, 1051–1056.
- 8. Lin, L.-M.; Zhou, Y.; Flavin, M. T.; Zhou, L.-M.; Nie, W.; Chen, F.-C. Bioorg. Med. Chem. 2002, 10, 2795-2798.
- 9. Furman, C.; Lebeau, J.; Fruchart, J.-C.; Bernier, J.-L.; Duriez, P.; Cotelle, N.; Teissier, E. J. Biochem. Mol. Toxicol. 2001, 15, 270–278.
- 10. Park, E. J.; Park, R.; Lee, J. S.; Kim, J. Planta Med. 1998, 64, 464–466.
- 11. Rojas, J.; Paya, M.; Domínguez, J. N.; Luisa Ferrandiz, M. Bioorg. Med. Chem. Lett. 2002, 12, 1951–1954; Herencia, F.; Ferrandiz, M. L.; Ubeda, A.; Guillen, I.; Domínguez, J. N.; Charris, J. E.; Lobo, G. M.; Alcaraz, M. J. Free Radical Biol. Med. 2001, 30, 43–50.
- 12. Satyanarayana, M.; Tiwari, P.; Tripathi, B. K.; Srivastava, A. K.; Pratap, R. Bioorg. Med. Chem. 2004, 12, 883-886.
- 13. Lawrence, N. J.; Renninson, D.; McGown, A. T.; Ducki, S.; Gul, L. A.; Hadfield, J. A.; Khan, N. J. Comb. Chem. 2001, 3, 421–426; Nielsen, S. F.; Christensen, S. B.; Cruciani, G.; Kharazmi, A.; Liljefors, T. J. Med. Chem. 1998, 41, 4819–4832; Dimmock, J. R.; Kandepu, N. M.; Hetherington, M.; Quail, J. W.; Pugazhenthi, U.; Sudom, A. M.; Chamankhah, M.; Rose, P.; Pass, E.; Allen, T. M.; Halleran, S.; Szydlowski, J.; Mutus, B.; Tannous, M.; Manavathu, E. K.; Myers, T. G.; Clercq, E. D.; Balzarini, J. J. Med. Chem. 1998, 41, 1014–1026; Li, R.; Kenyon, G.

L.; Cohen, F. E.; Chen, X.; Gong, B.; Dominguez, J. N.; Davidson, E.; Kurzban, G.; Miller, R. E.; Nuzum, E. O.; Rosenthal, P. J.; McKerrow, J. H. J. Med. Chem. 1995, 38, 5031–5037; Edwards, M. L.; Stemerick, D. M.; Sunkara, P. S. J. Med. Chem. 1990, 33, 1948–1954.

- 14. Bu, X.; Zhao, L.; Li, Y. Synthesis 1997, 1246–1248; Bu, X.; Li, Y. J. Nat. Prod. 1996, 59, 968–969.
- 15. Sathyanarayana, S.; Krishnamurthy, H. G. Curr. Sci. 1988, 57, 1114–1116; Alcantara, A. R.; Marinas, J. M.; Sinisterra, J. V. Tetrahedron Lett. 1987, 28, 1515–1518; Sinisterra, J. V.; Garcia-Raso, A. Synthesis 1984, 502–508.
- 16. Climent, M. J.; Corma, A.; Iborra, S.; Primo, J. J. Catal. 1995, 151, 60–66.
- 17. Daskiewicz, J. B.; Comte, G.; Barron, D.; Pietro, A. D.; Thomasson, F. Tetrahedron Lett. 1999, 40, 7095–7098.
- 18. Sebti, S.; Solhy, A.; Tahir, R.; Boulaajaj, S.; Mayoral, J. A.; Fraile, J. M.; Kossir, A.; Oumimoun, H. Tetrahedron Lett. 2001, 42, 7953–7955; Sebti, S.; Solhy, A.; Smahi, A.; Kossir, A.; Oumimoun, H. Catal. Commun. 2002, 3, 335– 339.
- 19. Calloway, N. O.; Green, L. D. J. Am. Chem. Soc. 1937, 59, 809–811.
- 20. Sz'ell, T.; Sohár, I. Can. J. Chem. 1969, 47, 1254-1258; Sipos, G.; Sirokman, F. Nature 1964, 202, 489–490.
- 21. Irie, K.; Watanabe, K. Bull. Chem. Soc. Jpn. 1980, 53, 1366–1371.
- 22. Mazza, L.; Guaram, A. Synthesis 1980, 41–44.
- 23. Nakano, T.; Irifune, S.; Umano, S.; Inada, A.; Ishii, Y.; Ogawa, M. J. Org. Chem. 1987, 52, 2239–2244.
- 24. Iranpoor, N.; Kazemi, F. Tetrahedron 1998, 54, 9475– 9480.
- 25. Breslow, D. S.; Hauser, C. R. J. Am. Chem. Soc. 1940, 62, 2385–2388.
- 26. Representative procedure for preparation of chalcones by condensation between acetophenone and benzaldehyde: To a stirred solution of acetophenone 2a (1.2 g, 10 mmol) and benzaldehyde 2b (1.1 g, 10 mmol) was added gradually BF_3-Et_2O (0.6 mL, 5 mmol) at room temperature. (If the reactants were solids, a little dry dioxane was used as a solvent). The solution was stirred for 15 min at room temperature. After dilution with moist ether (100 mL), the solution was washed with water $(3 \times 50 \text{ mL})$ to discharge the colour and the BF_3-Et_2O complex. The ethereal solution obtained after extraction was dried over anhyd. Na2SO4 and evaporated under reduced pressure. The crude mixture was passed through a silica gel column chromatography to afford desired chalcone 2c (1.85 g, 90%).